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Abstract It is shown, concerning equivalent classes, that on a one-dimensional lattice with nearest neigh-
bour interaction, there are only four independent models possessing double-shocks. Evolution of the width
of the double-shocks in different models is investigated. Double-shocks may vanish, and the final state is
a state with no shock. There is a model for which at large times the average width of double-shocks will
become smaller. Although there may exist stationary single-shocks in nearest neighbour reaction diffusion
models, it is seen that in none of these models, there exist any stationary double-shocks. Models admitting
multi-shocks are classified, and the long period behaviour of multi-shock solutions is also investigated.

PACS. 02.50.Ga Markov processes

1 Introduction

Recently, shocks in one-dimensional reaction-diffusion
models have attracted much interest [1–18]. There are
some exact results on shocks in one-dimensional reaction-
diffusion models as well as simulations, numerical re-
sults [6], and mean field results [2]. Formation of local-
ized shocks in one-dimensional driven diffusive systems
with spatially homogeneous creation and annihilation of
particles is described in [12]. Recently, the families of
models with travelling wave solutions on a finite lattice
have been presented [4]. These models are the Asym-
metric Simple Exclusion Process (ASEP), the Branching
Coalescing Random Walk (BCRW), and the Asymmetric
Kawasaki-Glauber process (AKGP). In all of these cases
the time evolution of the shock observables is equivalent
to that of a random walker on a lattice possessing L sites,
with homogeneous hopping rates in the bulk, and spe-
cial reflection rates at the boundary [4]. Shocks have been
studied at both the macroscopic and the microscopic levels
and there are some efforts on addressing the question as
to how macroscopic shocks originate from the microscopic
dynamics [7]. Hydrodynamic limits are also investigated.

Among the important aspects of reaction-diffusion sys-
tems, is the phase structure of the system. The static
phase structure depends on the time-independent pro-
files of the system, while the dynamical phase structure
affects the evolution of the system, especially its relax-
ation behaviour. In [19–22], the phase structure of some
classes of single or multiple species reaction-diffusion sys-
tems are considered. These investigations are based on
the one-point functions of the systems. In recent work,
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both stationary and dynamical single-shocks on a one-
dimensional lattice are investigated [18]. Both an infinite
lattice and a finite lattice with boundaries are considered.
Static and dynamical phase transitions of these models
have been studied. It is found that the ASEP has no dy-
namical phase transition, but both the BCRW and the
AKGP have three phases, and the system may show dy-
namical phase transitions [18].

The question addressed in in the present work is, on
a one-dimensional lattice with nearest neighbour interac-
tion, which models possess double-shock and multi-shock
solutions? Here, double-shock means an uncorrelated state
where the occupation probability has two jumps. All the
models have nearest neighbour interactions, and are on a
one-dimensional lattice. For equivalent classes, it is con-
cluded there are only four independent models possess-
ing double-shocks. For two of the models, double-shock
vanishes, and the final state is a linear combination of
Bernoulli measures. There is a model for which at large
times the average width of double-shock becomes small.
It can be easily seen that there may exist stationary
single-shocks in nearest-neighbour reaction diffusion mod-
els (BCRW, and AKGP), in other words there are single-
shock states without any evolution. But in none of these
models, there is no stationary double-shock. Combining
single-shocks one may construct multi-shocks. There are
multi-shocks of the type (0, ρ, 0, ρ, ...) and (0, 1, 0, 1, ...).
At large times the final state is a linear combination of
single-shocks, or a state with no shock.

2 Notation

Consider a one-dimensional lattice, each point of which
is either empty or contains one particle. Let the lattice



440 The European Physical Journal B

have L sites. An empty state is denoted by |0〉 and an
occupied state is denoted by |1〉.

|0〉 :=
(

1
0

)
, |1〉 :=

(
0
1

)
. (1)

If the probability that the site i is occupied is ρi then the
state of that is represented by

(
1−ρi

ρi

)
. The state of the

system is characterized by a vector

|P〉 ∈ V ⊗ · · · ⊗ V︸ ︷︷ ︸
L

, (2)

where V is a 2-dimensional vector space. All the elements
of the vector |P〉 are nonnegative, and

〈S|P〉 = 1. (3)

Here, 〈S| is the tensor-product of L covectors 〈s|, where
〈s| is a covector the components of which (sα’s) are all
equal to one. The evolution of the state of the system is
given by

|Ṗ〉 = H |P〉, (4)

where the Hamiltonian H is stochastic, by which it is
meant that its nondiagonal elements are nonnegative and

〈S|H = 0. (5)

The interaction is nearest-neighbour, if the Hamiltonian
is of the form

H =
L−1∑
i=1

Hi,i+1, (6)

where

Hi,i+1 := 1 ⊗ · · · ⊗ 1︸ ︷︷ ︸
i−1

⊗H ⊗ 1 ⊗ · · · ⊗ 1︸ ︷︷ ︸
L−1−i

. (7)

Nondiagonal elements of H , shown by ωij , are reaction
rates, hence nonnegative, and its diagonal elements are
nonpositive. ωij is the rate for changes of the configura-
tion of a pair of neighbouring sites from the initial state j
to the final state i. The state |00〉 is labelled as the state 1,
|01〉 as 2, |10〉 as 3, and finally |11〉 is the fourth state.
Thus, e.g. ω23 is the rate for change of configuration |10〉
to |01〉, which is the hoping rate to the right.

Any configuration of the system may be represented
by the vector |Ea〉. Hence, the system is spanned by 2L

vectors, |Ea〉(a = 1, 2, ...2L), and any physical state is a
linear combination of these vectors:

|P〉 =
2L∑

a=1

Pa|Ea〉, where
2L∑

a=1

Pa = 1. (8)

Pa’s are nonnegative real numbers. Pa is the probability
of finding the system in the configuration a.

It is said that the state of the system is a single-shock
at the site k if there is a jump in the density at the site k,
and the state of the system is represented by a tensor
product of the states at each site as

|ek〉 = u⊗k ⊗ v⊗(L−k), (9)

where

u :=
(

1 − ρ1

ρ1

)
v :=

(
1 − ρ2

ρ2

)
. (10)

It is seen that
〈S|ek〉 = 1. (11)

|ek〉 represents a state for which the occupation probabil-
ity for the first k sites is ρ1, and the occupation probability
for the next L− k sites is ρ2. The set |ek〉, k = 0, 1, ...L is
not a complete set, but linearly independent.

There are three families of stochastic, one-dimensional,
non-equilibrium lattice models, (ASEP, BCRW, AKGP),
such that when the initial state of these models is a linear
superposition of shock states, the state of the system |P〉
remains a linear combination of shock states at the later
times. For these models

H|ek〉 = d|ek−1〉 + d′|ek+1〉 − (d + d′)|ek〉, (12)

where d and d′ are some parameters which depend on the
reaction rates in the bulk, and the densities ρ1 and ρ2.
Hence, the span of |ek〉’s is an invariant subspace of the
Hamiltonian H of the above mentioned models. It should
be noted that the number of |ek〉’s is L + 1, and an arbi-
trary physical state is not necessarily expressible in terms
of |ek〉’s.

Next, assume that the initial state of the system is a
linear combination of shock states:

|P〉(0) =
L∑

k=0

pk(0)|ek〉. (13)

The pk’s are not necessarily nonnegative; hence, any of
them may be greater than one. For such an initial state,
the system remains in the sub-space spanned by shock
measures.

|P〉(t) =
L∑

k=0

pk(t)|ek〉. (14)

Using (11), it is seen that

L∑
k=0

pk(t) = 1. (15)

The three models are classified as follows [4]

1. ASEP: the only nonvanishing rates in the bulk are the
rates of diffusion to the right ω23 and left ω32. In this
case the densities can take any value between 0 and 1
(ρ1, ρ2 �= 0, 1). d and d′ are

d =
ρ1(1 − ρ1)
ρ2 − ρ1

(ω23 − ω32)

d′ =
ρ2(1 − ρ2)
ρ2 − ρ1

(ω23 − ω32). (16)

It should be noted that the densities ρ1, and ρ2 are
also related through

ρ2(1 − ρ1)
ρ1(1 − ρ2)

=
ω23

ω32
. (17)
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Therefore,

d =
ρ1

ρ2
ω23, d′ =

ρ2

ρ1
ω32. (18)

2. BCRW: the nonvanishing rates are, coalescence (ω34,
and ω24), branching (ω42 and ω43), and diffusion to
the left and right (ω32 and ω23). The density ρ1 can
take any value between 0 and 1, but ρ2 should be zero.
These parameters are related through

ω23

ω43
=

ω24 + ω34

ω42 + ω43
=

1 − ρ1

ρ1
. (19)

The parameters d and d′ are

d = (1 − ρ1)ω32 + ρ1ω34,

d′ =
ω43

ρ1
. (20)

If ω32 = ω34 = ω43 = ω23 = 0, and ω24/ω42 = (1 −
ρ)/ρ, then d = d′ = 0, and the model allows stationary
single-shocks.

3. AKGP: the nonvanishing rates are destruction (ω12

and ω13), branching to the left and right (ω42 and ω43),
and diffusion to the left ω32. The probability densities
should always take the values ρ1 = 1 and ρ2 = 0. The
hoping parameters are d = ω13, d′ = ω43.

3 Double-shocks

The state of a double-shock may be defined through

|em,k〉 = u⊗m ⊗ v⊗k ⊗ w⊗(L−k−m), m + k ≤ L, (21)

where

u :=
(

1 − ρ1

ρ1

)
v :=

(
1 − ρ2

ρ2

)
w :=

(
1 − ρ3

ρ3

)
.

(22)
|em,k〉 represents a state for which the occupation proba-
bility for the first m sites is ρ1, the occupation probability
for the next k sites is ρ2, and the occupation probability
for remaining sites is ρ3. A state of this type is a double-
shock. It has the first shock at the site m, and the other
at the site m+ k. The width of double-shock is k, and the
densities are ρi ∈ [0, 1]. For it to be classed as a double-
shock, ρ1 should be different from ρ2, and ρ2 also should
be different from ρ3. Suitable Hamiltonians for the sys-
tem possess the property that the span of |em,k〉’s is an
invariant subspace of H:

H|em,k〉 = d1|em−1,k+1〉 + d′1|em+1,k−1〉 + d2|em,k−1〉
+ d′2|em,k+1〉 − (d1 + d′1 + d2 + d′2)|em,k〉, k ≥ 2,

(23)

where the di’s and d′i’s are parameters which depend on
the reaction rates, and may be considered as the rates
of jump for the shock to the left or right, respectively.
H|em,1〉 will be considered later.

Similar to single-shocks, one should examine cases with
different values of ρ separately. The region of values may
be divided for ρ into ρ = 0, 0 < ρ < 1, and ρ = 1.
From now on the cases ρ = 0 and ρ = 1 will be ex-
plicitly stated, and wherever ρ appears, it means that
ρ �= 0, 1. Double-shocks may possess various combina-
tions of densities. There are different models, which may
transform to each other through particle-hole, or right-
left interchange. These models are called equivalent mod-
els. As an example, the model allowing the double-shock
(ρ1, ρ2, ρ3) = (0, ρ, 1) is related to the model allowing
the double-shock (1, ρ, 0) through right-left interchange.
It is also related to the model allowing the double-shock
(1, 1 − ρ, 0) through particle-hole interchange.

Consider the double-shock (0, 1, ρ). A necessary condi-
tion for the Hamiltonian where the span of double-shock
measures is an invariant subspace of H, is that the span
of each of single-shock measures (0, 1) and (1, ρ) are sep-
arately invariant subspaces of H. The single-shocks (0, 1)
form an invariant subspace for the Hamiltonian in the
AKGP. The only interactions which may have nonzero
rates are

∅A → (∅∅, AA), A∅ → (∅∅, AA, ∅A). (24)

So long as the single-shock (0, 1) is considered, there
is no extra constraint on the nonzero reaction rates.
The single-shocks (1, ρ) form an invariant subspace for
the Hamiltonian in the BCRW, with the following
interactions:

∅∅ → (∅A, A∅), ∅A → (∅∅, A∅), A∅ → (∅∅, ∅A),
(25)

whose reaction rates should satisfy

ω21 + ω31

ω12 + ω13
=

ω23

ω13
=

ρ

1 − ρ
. (26)

The space of parameters of this model [a double-shock
(0, 1, ρ)] is the overlap of the space of parameters of the
AKGP and the BCRW. Gathering all these together, it is
apparent that all the reaction rates should be zero. Hence,
there is no reaction diffusion model with nearest neighbour
interaction for which the double-shocks (0, 1, ρ) form an
invariant subspace.

It can easily be shown that, concerning equivalent
classes, there are only four independent cases.

1. (ρ1, ρ2, ρ3): Among the valid models, (and for ρi =
0, 1), the ASEP is the only model for which double-
shocks forms an invariant subspace. The only nonvan-
ishing rates are ω23 and ω32, and they should satisfy

ω23

ω32
=

ρ2(1 − ρ1)
ρ1(1 − ρ2)

=
ρ3(1 − ρ2)
ρ2(1 − ρ3)

. (27)

The di’s and d′i’s are

d1
ρ2

ρ1
= d2

ρ3

ρ2
= ω23

d′1
ρ1

ρ2
= d′2

ρ2

ρ3
= ω32. (28)
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This model is investigated by [18]. The rates ω23 and
ω32 are positive and nonzero; hence, the di’s and d′i’s
are also nonzero. For stationary double-shock to occur,
H|em,k〉 = 0, which makes di = d′i = 0. This is unac-
ceptable. Therefore, it is impossible to have stationary
double-shock in the ASEP.

2. (0, ρ, 0), (or (ρ, 0, ρ)): The necessary condition for a
model possessing double-shocks (0, ρ, 0) (or (ρ, 0, ρ))
is that this model possesses both single-shocks (0, ρ),
and (ρ, 0). Nonvanishing rates for such a model are ω23,
ω24, ω32, ω34, ω42 and ω43. These rates should satisfy

ω24 + ω34

ω42 + ω43
=

ω32

ω42
=

ω23

ω43
=

1 − ρ

ρ
. (29)

The di’s and d′i’s are

d1 =
ω42

ρ
, d′1 = (1 − ρ)ω23 + ρω24,

d′2 =
ω43

ρ
, d2 = (1 − ρ)ω32 + ρω34. (30)

The Hamiltonian with the above mentioned reaction
rates also possesses the double-shock (ρ, 0, ρ). The only
difference is that the rate of jump to the left (and
right) of the first double-shock is the rate of jump to
the right (and left) for the second one. For stationary
double-shocks to occur, the di’s should be zero, which
requires that all the rates are zero. Therefore, there is
no stationary double-shock in this model.

3. (0, 1, 0): The nonvanishing rates are ω13, ω12, ω42, ω43.
This model is an asymmetric generalization of the zero
temperature Glauber model. The di’s and d′i’s are

d1 = ω42, d′1 = ω12,

d2 = ω13, d′2 = ω43.
(31)

To have stationary double-shock the di’s and d′i’s
should be zero, which makes all the reaction rates van-
ish. Therefore, this model does not have any stationary
double-shock as well.

4. (0, ρ, 1): The only nonvanishing rate is ω23. The di’s
and d′i’s are

d1 = 0, d′1 = (1 − ρ)ω23,

d2 = ρω23, d′2 = 0.
(32)

This model does not have any stationary double-shock
as well.

If the initial state is a linear combination of double-shocks,
then

|P〉(t) =
∞∑

m=−∞

∞∑
k=1

pm,k(t)|em,k〉, (33)

where pm,k is the contribution of the double-shock (mk)
to the state of the system. Using (4), (33), and the linear
independence of |em,k〉’s, the dynamical equation can be
obtained for the pmk’s. It is difficult to solve difference
equations of this type. The variable pm,k has two indices:
m representing the position of the first shock, and k the

width of the double-shock. The position of the first shock
can be neglected, and only the width of double-shock ex-
amined. This yields a difference equation which can be
solved more easily.

Next, consider the general case where the span of |emk〉
is an invariant subspace of H, then

H|em,k〉 =
∑

m′,k′
Hm′k′

mk |em′,k′〉. (34)

If the Hamiltonian has the property that
∑

m′ Hm′k′
mk is in-

dependent of m, then a new Hamiltonian H̃ can be defined
using

H̃k′
k =:

∑
m′

Hm′k′
mk . (35)

It can easily be shown that H̃ is stochastic, meaning that

H̃k′
k > 0, for k �= k′,∑

k′H̃k′
k = 0. (36)

Then, the position of the first shock m can be ignored,
leaving only the contribution from double-shocks with
width k to consider. Clearly, it is inevitable that some
part of information about the position of the first shock
will be lost. Now |fk〉 can be defined as the state of a
double-shock with width k. Identifying all |em,k〉 with the
same m to each other in the state (33), another state |P̃〉
can be defined, where the information about the position
of the first shock is ignored:

|P̃〉(t) =
∞∑

k=1

qk(t)|fk〉. (37)

Here, qk(t) is defined using

qk :=
∞∑

m=−∞
pmk. (38)

This is the contribution of all double-shocks possessing
width k. Then, instead of (23),

H̃|fk〉 = D|fk+1〉 + D′|fk−1〉 − (D + D′)|fk〉, k ≥ 2.
(39)

where
D := d1 + d′2, D′ := d′1 + d2. (40)

3.1 Double-shocks (0, ρ, 0) and (0, 1, 0) on a periodic
lattice

Next, consider a lattice with L sites, and with periodic
boundary conditions. Then, the only double-shocks which
can exist are (0, 1, 0) and (0, ρ, 0). Now add up the con-
tributions of all double-shocks with the same width. The
position of double-shocks will again be dispersed. Then
one should work with |fk〉, which represents the state
of a double-shock with the width k. |f0〉, and |fL〉 are
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Bernoulli measures corresponding to an empty lattice and
a full lattice, respectively. It can easily be shown that

H̃|f0〉 = 0,

H̃|fk〉 = D|fk+1〉 + D′|fk−1〉 − (D + D′)|fk〉, k �= 0, L,

H̃|fL〉 = 0. (41)

Here, D represents the rate at which the width of the
double-shock is increasing, and D′ represents the rate its
width is decreasing. This model can be mapped to a model
with one particle on a lattice with boundaries at k = 0,
and k = L. The particle hops to the right and left with the
rates D and D′, respectively, and there are traps at the
boundaries. The system has only two stationary states,
|f0〉, and |fL〉. Hence, at large times there is no shock,
and the final state is a linear combinations of the Bernoulli
measures:

|P̃〉 = q0|f0〉 + qL|fL〉. (42)

If the initial state is a linear combination of |fk〉’s, then

|P̃〉(t) =
L∑

k=1

qk(t)|fk〉. (43)

Using (40) yields

q̇0 = D′q1,

q̇1 = D′q2 − (D + D′)q1,

q̇k = D′qk+1 + Dqk−1 − (D + D′)qk,

k �= 0, 1, L − 1, L,

q̇L−1 = DqL−2 − (D + D′)qL−1,

˙qL = DqL−1. (44)

The qk(t)’s in the bulk (k �= 0, L) are

qk(t) =
2
L

(
D

D′

)k/2

exp [− (D + D′) t]

×
L−1∑
s=1

L−1∑
m=1

qm(0)
(

D

D′

)m/2

sin
(sπm

L

)
sin

(
sπk

L

)

× exp
[
2t
√

DD′ cos
(sπ

L

)]
. (45)

One may integrate q1(t) and qL−1(t) to obtain q0(t)
and qL(t), which are the only terms surviving at large
times. There is also another way to obtain the q0, and qL

at infinitely large times. In fact, there are two constants
of motion I1 and I2. The first of these, I1 is related to
the conservation of probability:

〈S|P̃〉 := 1 ⇒ I1

L∑
k=0

qk(t) = 1, (46)

and

I2 :=
L∑

k=0

qk(t)
(

D′

D

)k

. (47)

It should be noted that the system has two stationary
states. Therefore, there are two right eigenvectors corre-
sponding to zero eigenvalue for the Hamiltonian H, to-
gether with two left eigenvectors corresponding to zero
eigenvalue for H. These are

〈S| = (1 1 1...1) , (48)

and

〈S′| =

[
1

D′

D

(
D′

D

)2 (
D′

D

)3

...

(
D′

D

)L
]

. (49)

The second constant of motion can be obtained using
〈S|P̃〉(t). So long as D �= D′, the constants of motion I1

and I2 are two independent quantities. For D = D′, I1

and I2 are the same. However, as the stationary state has
twofold degeneracy, there should exist another constant
of motion. The second independent constant of motion is
I ′

2 :=
∑L

k=0 kqk(t) = 〈k〉. Hence, for D = D′, the average
width of the shock, 〈k〉, is a constant of motion. This is ex-
pected because D and D′ are the rates for increasing and
decreasing the width of the double-shock, respectively.

For the double-shock (0, ρ, 0), D′/D = 1 − ρ < 1.
Hence, the constants of motion are I1 and I2. The first
of these I1 is the summation of probabilities for finding a
double-shock with any width; therefore, it should be equal
to one. The second constant of motion also has a physi-
cal meaning. The rate for changing any configuration of a
pair of neighbouring sites to the state |∅∅〉 is zero. There-
fore, the probability for finding a completely empty lattice
does not change with time. I2 is exactly the probability
of finding an empty lattice in the initial state:

I2 =
L∑

k=0

qk (t) (1 − ρ)k =
L∑

k=0

qk (0) (1 − ρ)k
. (50)

Using the constants of motion, for D �= D′, at infinitely
large times, gives

q0 + qL = 1,

q0 +
(

D′

D

)L

qL =
L∑

k=0

qk (0)
(

D′

D

)k

. (51)

The solution to these equations is

q0(∞) =

L∑
k=0

qk (0) (D′/D)k − (D′/D)L

1 − (D′/D)L
,

qL(∞) =

1 −
L∑

k=0

qk (0) (D′/D)k

1 − (D′/D)L
. (52)

Thus, the contribution of |f0〉 and |fL〉 in the final state
depends on both reaction rates and initial conditions.

The Hamiltonian for the model possessing the double-
shock (0, 1, 0), with D = D′ is the Hamiltonian for the
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Glauber model at zero temperature. This model is in-
vestigated by [19, 23, 24]. The average density at each
site 〈ni〉(t) at the time t, and all the correlation func-
tions at large times for an infinite lattice have been cal-
culated in [23]. Static and dynamical phase transitions of
this model have also been studied in [19]. Here, D is not
necessarily equal to D′. For D′ > D and large L,

q0(∞) = 1 −
L∑

k=0

qk (0) (D′/D)k − (D′/D)k−L
,

qL(∞) = 1 − q0(∞). (53)

If only double-shocks with finite widths make contribu-
tions initially, then in the thermodynamic limit (L→∞)
the system will finally fall into the state f0. However, if
D′ < D it can be seen that both stationary states make
contributions to the final state.

For the case D = D′,

q0(∞) = 1 − 1
L

L∑
k=0

kqk (0) = 1 − 1
L
〈k〉,

qL(∞) =
1
L

L∑
k=0

kqk (0) =
1
L
〈k〉. (54)

This means that at large times the system is fully occu-
pied or empty. The probability of finding a fully occupied
lattice at large times is equal to the ratio of initial average
width of the double-shock to the size of the lattice.

3.2 Double-shock (0, ρ, 1)

Next, consider the double-shock (0, ρ, 1) on an infinite lat-
tice. The only nonvanishing rate is ω23, which by a suitable
redefinition of time, can be set equal to 1. Direct calcula-
tion gives

H|em,1〉 = 0,

H|em,k〉 = (1 − ρ)|em+1,k−1〉 + ρ|em,k−1〉 − |em,k〉,
k �= 1. (55)

It is apparent that there is no probability for width in-
crease. If there is initially a shock |em,k〉, then at later
times its width becomes smaller, and after long periods
there are only double-shocks with unit width. Starting
with a linear combination of the shocks, the dynamical
equation for the pm,k’s is

ṗm,1 = (1 − ρ)pm−1,2 + ρpm,2,

ṗm,k = (1 − ρ)pm−1,k+1 + ρpm,k+1 − pm,k, k �= 1.

(56)

Defining qk through (38) gives

q̇1 = q2,

q̇k = qk+1 − qk, k �= 1. (57)

Clearly, if the state of the system initially is a double-
shock, e.g. |eM K〉, then at later times there are only
double-shocks at the position of the first shock in the
range M ≤ m ≤ M + K − 1, and possessing width
1 ≤ k ≤ M + K −m. Now assume that the initial state is

|P̃〉 =
L∑

k=0

qk(0)|fk〉, (58)

where |fk〉 is the state of double-shocks with the width k.
Then,

q̇0 = 0,

q̇1 = q2,

q̇k = qk+1 − qk, 2 ≤ k ≤ L − 1,

q̇L = −qL,

q̇k = 0, L + 1 ≤ k. (59)

The above equations show that at large times there
are only contributions from the double-shocks with unit
width. This set of equations can be solved, yielding the
result

qk(t) =
L−k∑
n=0

qk+n(0)
tn

n!
e−t, 2 ≤ k ≤ L. (60)

This, together with q̇1 = q2, can be used to obtain q1(t):

q1(t) = q1(0) +
L−2∑
n=0

qn+2(0)
∫ t

0

t′n

n!
e−t′

=
L∑

n=1

qn(0) −
L−2∑
n=0

n∑
m=0

qn+2(0)
tm

m!
e−t. (61)

As expected, at large times all the double-shocks change
into the double-shock with unit width.

Next, examine the distribution of these double-shocks
at large times. Using (55), and defining Am,k :=
exp(tH)|emk〉, it is seen that

∂Am,k

∂t
+ Am,k = (1 − ρ)Am+1,k−1 + ρAm,k−1, k �= 1,

Am,1 = |ek1〉. (62)

At large times this equation becomes

Am,k(∞) = (1 − ρ)Am+1,k−1(∞) + ρAm,k−1(∞),
k �= 1. (63)

The solution is

Am,k(∞) = lim
t→∞

(
etH|emk〉

)

=
k−1∑
j=1

(
k − 1

j

)
(1 − ρ)jρk−1−j |em+j,1〉. (64)

Hence, at large times the state of the system is a linear
combination of double-shocks with unit width. The distri-
bution of the position of these double-shocks is a binomial
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distribution. Now consider the initial state to be a double-
shock with width k: |e0,k〉. Then, the average position of
the first shock at large times is

〈j〉 = (k − 1)(1 − ρ), (65)

and the width of the binomial distribution is√
ρ(1 − ρ)(k − 1).

4 Multi-shocks

Multi-shocks can be constructed by combining single-
shocks. The only models with multi-shocks are as follows.

1. (ρ1, ρ2, ρ3, ...): The span of multi-shocks (ρ1, ρ2, ρ3, ...)
is an invariant subspace of the ASEP Hamiltonian pro-
vided the densities satisfy

ρi+1(1 − ρi)
ρi(1 − ρi+1)

=
ω23

ω32
. (66)

It can be easily seen that the rate of hoping of the ith
shock to the left, di, and the rate of hoping of the ith
shock to the right, d′i, is given by

di = ω23
ρi

ρi+1
,

d′i = ω32
ρi+1

ρi
. (67)

This result is obtained in [3].
2. (0, ρ, 0, ρ, ...) and (0, 1, 0, 1, ...): The model allowing

multi-shocks of the type (0, ρ, 0, ρ, ...) are ones that al-
low the double-shocks (0, ρ, 0), or (ρ, 0, ρ). The model
possessing multi-shocks of the type (0, 1, 0, 1, ...) is
an asymmetric generalization of the zero temperature
Glauber model. In both of these multi-shocks there are
edges at shock points. The edges are destroyed pair-
wise. Consider a multi-shock of order N with the first
shock at the site m. It is seen that the action of Hamil-
tonian on such state is

H|em,k1,...,kN−1〉 = d1|em−1,k1+1,...,kN−1〉
+ d′1|em+1,k1−1,...,kN−1〉
+ d2|em,k1−1,...,kN−1〉
+ d′2|em,k1+1,...,kN−1〉 + ...

+ d2|em,k1,...,kN−1−1〉
+ d′2|em,k1,...,kN−1+1〉. (68)

If any of the ki’s on the left hand side is equal to one,
then on the right a multi-shock of order N − 2 will oc-
cur. Hence, there is a finite probability that the system
transforms into a state with fewer shocks, and there
no probability for increasing the number of shocks. In
fact, if there exists a state for which any state can
transform directly or even indirectly to it, and that
state has no evolution, then that state is the final sta-
tionary state. Finally, consider a periodic lattice. The

number of shocks, N , should be even. Hence at large
times the state of system is a state with no shock. For
the models on an infinite lattice number of shocks, N
may be even or odd. Then for odd N , the final state
is a linear combination of single-shocks.

5 Summary

There are three types of models with travelling wave so-
lutions on a one-dimensional lattice. These are classified
in [4]. It is seen that there are four types of models allow-
ing double-shocks. Double-shocks, and the models allow-
ing these double-shocks are as follows.

• (ρ1, ρ2, ρ3): the nonvanishing rates are ω23, and ω32.
• (0, ρ, 0), [and also (ρ, 0, ρ)]: the nonvanishing rates are

ω23, ω24, ω32, ω34, ω42 and ω43.
• (0, 1, 0): the nonvanishing rates are ω13, ω12, ω42, ω43.
• (0, ρ, 1): the only nonvanishing rate is is ω23.

There are three type of models allowing multi-shocks. The
multi-shocks are of the following types.

• (ρ1, ρ2, ρ3, ...): the nonvanishing rates are ω23, and ω32.
• (0, ρ, 0, ρ, ...): the nonvanishing rates are ω23, ω24, ω32,

ω34, ω42 and ω43.
• (0, 1, 0, 1, ...): the nonvanishing rates are ω13, ω12, ω42,

ω43.

This work was partly supported by the research council of the
Alzahra University. We would like to thank M. Khorrami for
useful discussions.
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